Master of Computer Application Course Outcome (CO) | | | SEMESTER – I | | |----------------|---|---|--| | Course
Code | Course Title | Course Outcome (CO) | Cognitive Level
(As Per Blooms
Taxonomy) | | | | CO1: Recall Java syntax rules, including data
types, variables, and control structures. | Remember (1) | | MCA- | Object
Oriented | • CO2: Create Java application development using polymorphism, inheritance, and inner classes. | Create (6) | | 411 | Programming Using Java | CO3: Develop GUI interface and event driven applications. | Create (6) | | | | CO4: Manipulate databases through java application. | Apply (4) | | | | CO1: Write java programs using inner classes
and static fields in implementation of Java
application | Apply (3) | | MCA- | Lab on Java | CO2: Develop Java application for GUI
development and event handling. | Create (6) | | 412 | Programming | • CO3: Develop database application using JDBC. | Apply (3) | | | | CO4: Students will be able to apply Java
programming constructs to develop simple
programs that solve basic computational
problems. | Apply (3) | | | Data
Structures
and
Algorithms | CO1: Understand the concept of Dynamic
memory management, data types, algorithms,
Big O notation. | Understand (2) | | MCA | | CO2: Understand data structures such as arrays,
linked lists, stacks and queues, graphs, trees and
hash tables. | Understand (2) | | MCA-
413 | | CO3: Understand about hash functions, collision
resolution techniques like separate chaining and
open addressing. | Understand (2) | | | | CO4: Study binary trees: representations, operations like insert and delete, and traversal methods including in order, preorder, postorder, and level order. | Analyze (4) | | | | CO1: Ability to analyze the time and space
complexities of Algorithms | Understand(2) | | | Lab on Data | CO2: Understand the difference between
structured data and data structure | Remember (1) | | MCA-
414 | Structures
and
Algorithms | CO3: Choose the appropriate data structure and
algorithm design method for a specified
application. | Evaluate (6) | | | | • CO4: Ability to design programs using a variety of data structures such as stacks, queues, binary trees, search trees and etc. | Analyze (4) | | MCA- | Python
Programming | CO1: Understand the basic concept of Python Programming. | Understand(2) | | 415 | | CO2: Understand lists, tuples, dictionaries,
strings and files efficiently for solving real world | Apply (3) | | | | problems | | |-------------|---|--|----------------| | | | CO3: Recall the concepts of object-oriented programming using python | Remember(1) | | | | CO4: Understand modules, packages and GUI based programming for web. | Understand(2) | | | | CO5: Develop Database connectivity steps. | Create (6) | | | | CO1: Recall Python syntax rules, including variables, data types, and basic control structures (loops, conditionals). | Remember (1) | | MCA- | Lab on
Python | CO2: Demonstrate use and working of various data types, control structures, files, exceptional handling etc. | Apply (3) | | 416 | Programming | CO3: Create, configure and make use of modules | Create (6) | | | | CO4. Develop console based and GUI applications (both procedural/object oriented) to solve different problems using python programming. | Create (6) | | | | CO1: Understand the informed and uninformed problem types. | Understand (2) | | Man | Fundamentals
of Artificial
Intelligence | CO2: Identify problems that are amenable to solution by AI methods. | Apply (3) | | MCA-
417 | | CO3: Identify appropriate AI methods to solve a given problem. | Apply (3) | | | | CO4: Understand system using different
informed search / uninformed search or heuristic
approaches. | Understand (2) | | | | CO1: Apply knowledge of cloud computing
fundamentals to analyze and propose appropriate
deployment techniques for specific
organizational needs | Apply (3) | | MCA-
418 | Cloud
Computing-I | CO2: Demonstrate comprehension of
virtualization concepts, including types
(hardware, storage, and network) and their
relevance to cloud computing. | Understand (2) | | (A) | | CO3: Describe Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) models, including their key features and use cases. | Remember (1) | | | | CO4: Apply parallel and distributed programming paradigms in cloud environments to develop scalable applications. | Apply (3) | | | | • CO1: Configure various virtualization tools such as Virtual Box, VMware Workstation. | Apply (3) | | MCA- | Lab on Cloud | CO2: Learn how to simulate a cloud
environment to implement new schedulers. | Create (6) | | 418(B) | Computing-I | CO3: Demonstrate the benefits of various distributed computing platforms | Apply (3) | | | | CO4: Deploy applications in a simulated cloud environment | Apply (3) | | MCA-
419 | Data Science- | CO1: Understand the fundamental concepts of data science. | Understand (2) | | (A) | | CO2: Apply data cleaning and preprocessing techniques. | Apply (3) | |----------------|----------------------|---|--------------------------------| | | | CO3: Visualize and present the inference using various tools. | Apply (3),
Analyze(4) | | | | CO4: Evaluate relationships between variables using correlation and covariance | Analyze(4),
Evaluate (5) | | | | CO5: Create interactive visualizations and
dashboards for business analytics using Power
BI. | Create (6),
Apply (3) | | | | • CO1: Demonstrate Proficiency in Setting Up and Using Python Data Science Tools | Apply (3) | | MCA- | Lab on Data | CO2: Apply Data Preprocessing Techniques for
Machine Learning. | Apply (3) | | 419(B) | Science -I | CO3: Conduct Statistical Analysis and Interpret
Results | Analyze (4),
Evaluating (5) | | | | CO4: Develop and Evaluate Machine Learning
Models. | Evaluate (5),
Create (6) | | | | CO1: Describe the differences between packet
filters and firewalls and how they protect
networks. | Understand (2) | | | | CO2: Describe the different types of cloud
service models and deployment models, and how
they impact security | Understand (2) | | MCA-
420(A) | Cyber
Security | CO3: Apply vulnerability assessment tools like
Nessus and OpenVAS to identify vulnerabilities
in a given system. | Apply (3) | | | | CO4: Apply digital forensics techniques to a simulated cybercrime scenario. | Apply (3) | | | | CO5: Analyze the results from web application
security tools and differentiate between various
types of vulnerabilities identified. | Analyze (4) | | | | CO1: Describe methods for analyzing web app
security. | Understand (1) Understand | | MCA- | Lab on Cyber | CO2: Identify key tools available in Kali Linux for web application analysis. | Understand (1) | | 420(B) | Security | CO3: Implement Kali Linux in Virtual
Box/VMware and set up network. | Analyze(4) | | | | CO4: Define John the Ripper to decode hashed passwords. | Remember (1) | | | | CO1: Recall the basic HTML tags and their purposes | Remember (1) | | MCA- | Web
Technologies- | CO 2: Describe how JavaScript can be used to
manipulate the DOM and Handle events. | Understand (2) | | 421(A) | I | CO 3: To understand jQuery selectors and
methods for DOM manipulation | Understand (2) | | | | CO 4: To analyze the responsiveness and visual appeal of web interfaces Created with Bootstrap. | Analyze(4) | | MCA- | Lab on Web | CO1: Understand the structure of an HTML document, CSS styling and layout using CSS | Understand (2) | | 421(B) | Technologies-
I | CO2: Recall the concept of variables, scope,
functions, operators, looping, and conditional
statements in JavaScript | Remember (1) | | • | CO3: Implement interactive web applications using advanced event handling techniques in JavaScript. | Apply (3) | |---|---|----------------| | • | CO3: Implement interactive web applications using advanced event handling techniques in JavaScript. | Understand (2) | | SEMESTER – II | | | | |----------------|--|---|--| | Course
Code | Course Title | Course Outcome (CO) | Cognitive Level (As
Per Blooms
Taxonomy) | | | | CO1: Understand the fundamental concepts and
terminology associated with database systems,
including architecture, design, and various
models. | Understand (2) | | | | • CO2: Explain the fundamental concepts of Entity-Relationship (ER) modelling and its purpose in database design | Understand (2) | | MCA-
431 | Database
Management
System | CO3: Apply the relational model, specify
integrity constraints, and explain how to create
a relational database using an ER diagram and
normalization techniques. | Apply (3) | | | | CO4: Use knowledge to implement and
manipulate database schemas, perform SQL
queries, and manage transactions and
concurrency control. | Apply (3) | | | | CO5: Determine partitioning and distribution of
data across networked nodes of a DBMS and
data optimization in a distributed environment. | Analyze (4) | | | LAB on
Database
Management
System | CO1: Understand and Utilize DML (Data
Manipulation Language) and DDL commands
to create and maintain tables | Understand (2) | | | | CO2: Develop a relational database schema for
a given scenario, including tables, relationships,
and constraints. | Create (6) | | MCA-
432 | | CO3: Utilize the DML/DDL commands and
programming PL/SQL including stored
procedures, stored functions, cursors, views and
Triggers for modify data | Apply (2) | | | | CO4: Execute nested queries and perform
various types of JOIN operations to retrieve and
combine data from multiple tables | Analyze (4) | | | | CO5: Establish database connectivity and
perform operations using front-end tools. | Apply (2) | | | | CO1: Understand the activities during the
project scheduling of any software application. | Understand (2) | | MCA-
433 | Software Project Management | CO2: Understand about risk management
activities and the resource allocation for the
projects | Understand (2) | | | | CO3: Acquire knowledge and skills needed for
the construction of highly reliable software
project | Apply (3) | | | | • CO4: Apply different techniques of project | Apply (3) | | | | monitoring, control and review. | | |-----------------|-----------------------------------|--|--| | | | CO5: Explain various project management scheduling techniques. | Analyze (4) | | MCA- | | CO1: Understand and implement the supervised learning algorithms. CO2: Analyze and apply the machine learning | Understand (2)
Apply (3)
Apply (3) | | | Machine | concepts for different problems. • CO3: Apply the clustering algorithms for | Analyze (4) | | 434 | Learning | various problems. | Apply (3) | | | | • CO4: Evaluate and test the performance of the learning algorithms. | Evaluate (5) | | | | CO5: Design and create a learning model for
real time applications. | Create (6) | | | | CO1: Explain the evolution, characteristics,
service models, and deployment models of
cloud computing, analysing its benefits,
challenges, and architecture through real-world
applications. | Analysis (4) | | | Advanced
Cloud
Computing-II | CO2: Describe data centers, cloud
infrastructure, virtualization, cloud storage,
networking, security, and disaster recovery in
the cloud. | Remembering (2) | | MCA-
435(A) | | CO3: Compare major cloud service platforms,
develop cloud-native applications, and
implement micro services, containers, server
less computing, cloud databases, and Dev Ops
practices. | Analysis (4) | | | | CO4: Apply cloud resource management, auto-
scaling, load balancing, monitoring, cost
optimization, performance tuning, SLA
management, and multi-cloud strategies. | Apply (3) | | | | CO5: Understand and explore emerging trends like edge computing, IoT, AI, machine learning, block chain, quantum computing, green cloud practices, and future innovations in cloud computing. | Understanding (1) Evaluating (4) | | | Lab on | CO1: Configure cloud infrastructure. | Apply (3) | | MCA-
435(B) | Advanced
Cloud | • CO2: Monitor load on cloud, balance load by analyzing. | Analyze (4) | | | Computing | CO3: Work with real time cloud solutions. | Apply (3) | | | | CO1: Understand fundamental concepts of data
science and machine learning. | Understand (2) | | MCA-
436 (A) | | CO2: Apply machine learning algorithms to
solve practical problems using appropriate
libraries and frameworks. | Apply (3) | | | Data Science | CO3: Utilize big data technologies to process
and analyze large datasets | Apply (3),
Analyze(4) | | | II | CO4: Analyze advanced machine learning techniques and frameworks. | Analyze(4) | | | | CO5: Develop and implement advanced data science techniques, including time series analysis, natural language processing, and reinforcement learning. | Create (6)
Apply (3) | | | | CO1: Explore the fundamental concepts of data science & Machine Learning | Understand (2) | |----------------|---|---|-------------------------------| | MCA- | Lab on Data
Science -II | CO2: Understand data analysis techniques for applications handling large data. | Understand (2)
Analyze (4) | | 436(B) | | CO3.Understand various machine learning algorithms used in data science process | Understand (2) | | | | CO4.Visualize and present the inference using various tools. | Apply (3) | | | | CO1: Identify key concepts related to
information security, including confidentiality,
integrity, and availability. | Remember (1) | | MCA- | Information
Security and | CO2: Describe fundamental principles and practices of network security | Understand (2) | | 437(A) | Mitigation | • CO3: Apply vulnerability scanning tools and penetration testing techniques to assess security in a controlled environment. | Apply (3) | | | | • CO4: Analyze firewall rules and configurations to identify potential weaknesses. | Analyze (4) | | | | • CO1: Identify the basic structure and components of the DES encryption algorithm. | Remember (1) | | MCA-
437(B) | Lab on
Information
Security and
Mitigation | CO2: Describe the AES encryption and decryption processes, including key sizes and block modes. | Understand (2) | | | | • CO3: Implement a digital signature scheme in a program and test it for signing and verifying data. | Apply (3) | | | Web
Technologies-
II | • CO1: Identify the advantages of Angular JS and its MVC architecture. | Remember (1) | | MCA- | | • CO2: Describe how to create and use Angular JS modules. | Understand (2) | | 438(A) | | • CO3: Implement controllers in Angular JS, including methods and external controller files. | Apply (3) | | | | CO4: Develop MongoDB queries to perform CRUD operations. | Apply (3) | | | Lab on Web
Technologies-
II | • CO 1: Identify the syntax and basic usage of expressions in AngularJS. | Remember (1) | | MCA- | | CO 2: Develop a form that includes various validation rules to ensure data integrity. | Apply (3) | | 438(B) | | CO 3: To understand the designing library like Bootstrap. | Understand (2) | | | | CO 4: Describe the usage of insert and delete commands to manipulate data in MongoDB. | Understand (2) | | | | CO1: Recall fundamental concepts and understanding basic principles related to IoT security. | Remember (1) | | | | CO2: To understand essentials of IoT Security. | Understand (2) | | MCA-
439(A) | Internet of
Things (IOT) | • CO3: Implement interfacing of various sensors, actuators to the development boards. | Apply (3) | | | | CO4: Implementing IoT systems using standard communication protocols and analyzing their effectiveness for interoperability and data exchange. | Apply (3) | | | | CO5: Compare various IoT communication
technologies and Design various IoT
applications. | Analyze (4) | | |----------------|------------------------------------|---|--|----------------| | | | CO1: Recall the steps involved in installing operating systems on the Raspberry Pi | Remember (1) | | | MCA- | Lab on
Internet of | • CO2: Describe how each type of sensor works and its applications. | Understand (2) | | | 439(B) | Things (IOT) | CO3: Apply Wire IR sensors to a Raspberry Pi or Arduino board and ensure proper connections and functionality. | Apply (3) | | | | | • CO1: Recognize the characteristics, applications of big data that make it useful to real world problems. | Remember (1) | | | MCA- | Big Data | • CO2: Discuss the challenges and their solutions in Big Data | Understand (2) | | | 440(A) | Analytics | CO3: Understand and work on Hadoop
Framework and eco systems. | Understand (2) | | | | | CO4: Explain and analyze the Big Data using
Map-reduce programming in Hadoop | Understand (2) | | | | | • CO1: Apply HDFS commands to manage file systems in a distributed environment. | Apply (3) | | | | Lab on Big
Data
Analytics | • CO2: Develop Java applications for interacting with HDFS to perform file operations. | Apply (3) | | | MCA- | | CO3: Utilize Hadoop's built-in commands for efficient file and directory management. | Apply (3) | | | 440(B) | | CO4: Design and implement a pipeline of
multiple MapReduce jobs for complex data
workflows. | Apply (3) | | | | | CO5: Formulate and execute HiveQL queries to retrieve and manipulate data stored in Hive. | Apply (3) | | | | | | CO 1: Understand issues and challenges in
Natural Language Processing and NLP
applications and their relevance in the classical
and modern context. | Understand (2) | | MCA- | Natural | • CO 2: Apply text processing techniques and handle language scripts | Apply (3) | | | 441(A) | Language
Processing | CO 3: Understand Semantic Analysis theories
and approaches, including Meaning
representation, Lexical Semantics, word
similarity, and relationships. | Understand (2) | | | | | CO 4: Study different word classes and their roles in Part-of-Speech (POS) tagging. | Understand (2) | | | | T 1 | CO1: Understand installation and use of NLTK in python. | Understand (2) | | | MCA- | Lab on Natural Language Processing | CO2: Implement python program to process
text files, morphology of Marathi words | Apply (3) | | | 441(B) | | CO3: Understanding text files processing operation and Regular Expressions in NLP | Understand (2) | | | | | CO4: Understanding Morphology, PoS Tagging | Understand (2) | | | MCA-
442(A) | Digital Image
Processing | CO1: Students will recall the fundamental elements of digital image perception and models. | Remember (1) | | | 1 | | | 7 | |----------------|-----------------------------|---|---| | | | CO2: Students will analyze various methods of
image enhancement, restoration, and analysis
and understand their applications | Analyze (4) | | | | CO3: Students will understand how point operations and histogram modeling contribute to image enhancement. | Understand (2) | | | | CO4: Students will recall models and techniques used in image restoration | Remember (1) | | | | CO1: Identify different image enhancement techniques and their purposes. | Remember (1) | | 1.60 | LAB on | CO2: Apply histogram equalization to an image and plot its histogram | Apply (3) | | MCA-
442(B) | Digital Image
Processing | CO3: Develop gray level slicing (intensity level slicing) on an image and analyze its effects. | Create (6) | | | | CO4: Develop various smoothing spatial filters
(e.g., mean, median, Gaussian filters) on
images. | Create (6) | | DM | D 1 | CO1: Understand the basic concepts of research
and its methodologies, identify appropriate
research topics, select and define appropriate
research problem and parameters | Remember(1) | | RM- | Research | CO2: Prepare a research proposal. | Understand (2) | | 417 | Methodology | CO3: Organize and conduct research in a more
appropriate manner, writing research report and
thesis. | Apply(3) | | | | CO4: Carry out sampling and data analysis | Apply(3) | | | | SEMESTER – III | | | Course
Code | Course Title | Course Outcome (CO) | Cognitive Level
(As Per Blooms | | | | | Taxonomy) | | | | CO1: Understand and describe key concepts, evolution, importance, and applications of deep learning. | * | | MGA | Devis | * | Taxonomy) | | MCA-
451 | Deep
Learning | evolution, importance, and applications of deep learning. CO2: Apply basic neural network architectures | Taxonomy) Understand (2) | | | • | evolution, importance, and applications of deep learning. CO2: Apply basic neural network architectures and optimization techniques. CO3: Design and implement CNNs for | Taxonomy) Understand (2) Apply (3) | | | • | evolution, importance, and applications of deep learning. CO2: Apply basic neural network architectures and optimization techniques. CO3: Design and implement CNNs for computer vision tasks and transfer learning. CO4: Apply RNNs, LSTMs, and GRUs for | Taxonomy) Understand (2) Apply (3) Apply (3) | | | • | evolution, importance, and applications of deep learning. CO2: Apply basic neural network architectures and optimization techniques. CO3: Design and implement CNNs for computer vision tasks and transfer learning. CO4: Apply RNNs, LSTMs, and GRUs for sequential data problems. CO5: Analyze and evaluate advanced deep learning techniques like GANs and RL. CO1: Explain the fundamental concepts, origin, and components of blockchain and distributed ledger technology (DLT) | Taxonomy) Understand (2) Apply (3) Apply (3) Apply (3) Analyze(4), | | | Learning Block Chain | evolution, importance, and applications of deep learning. CO2: Apply basic neural network architectures and optimization techniques. CO3: Design and implement CNNs for computer vision tasks and transfer learning. CO4: Apply RNNs, LSTMs, and GRUs for sequential data problems. CO5: Analyze and evaluate advanced deep learning techniques like GANs and RL. CO1: Explain the fundamental concepts, origin, and components of blockchain and | Taxonomy) Understand (2) Apply (3) Apply (3) Apply (3) Analyze(4), Evaluate (5) Remember (1), | | 451 | Learning | evolution, importance, and applications of deep learning. CO2: Apply basic neural network architectures and optimization techniques. CO3: Design and implement CNNs for computer vision tasks and transfer learning. CO4: Apply RNNs, LSTMs, and GRUs for sequential data problems. CO5: Analyze and evaluate advanced deep learning techniques like GANs and RL. CO1: Explain the fundamental concepts, origin, and components of blockchain and distributed ledger technology (DLT) CO2: Illustrate how blockchain operates including structure, lifecycle, and the role of | Taxonomy) Understand (2) Apply (3) Apply (3) Apply (3) Analyze(4), Evaluate (5) Remember (1), Understand (2) Understand (2), | | | | applications (DApps). | | |--|-----------------------------|--|---| | | • | CO5: Evaluate the Hyperledger Fabric framework and describe its architecture, membership, chain code, and practical use cases in enterprise-level applications. CO1: Understand the fundamental concepts of mobile application development and gain insight into handheld devices, mobile operating systems, and Android platform architecture. | Analyze(4),
Evaluate (5)
Remember (1) | | | • | CO2: Set up the Android development environment and demonstrate the ability to create simple Android applications, utilizing Android components like Activities, Services, Broadcast Receivers, and Content Providers. | Understand (2) | | $\left \begin{array}{c} MCA-\\ 453(A) \end{array}\right $ Ap | Mobile pplication velopment | CO3: Design and develop interactive Android User Interfaces using various UI components, layouts, event handling techniques, and menus to ensure an intuitive user experience. | Apply (3) | | | • | CO4: Implement advanced Android features such as drag-and-drop, notifications, location-based services, and integration of email, SMS, and phone functionalities within an Android application. | Analyze(4) | | | • | CO5: Design and manage databases in Android applications using SQLite to store, retrieve, and manage data, and integrate databases effectively within the application's flow. | Create(6) | | | • | CO1: Install and configure the Android development environment using Android Studio, SDK tools, and cross-platform IDEs, and set up a C compiler in a virtual environment using VirtualBox. | Apply (3) | | | Lab on
Mobile | CO2: Design and develop Android user interfaces using layouts, views, widgets (e.g., DatePicker, Spinner, RadioButtons), and demonstrate event handling with various UI components. | Create (6) | | | oplication • velopment | CO3: Implement core Android components such as Activities, Intents (Implicit and Explicit), Dialogs, and Menus to build interactive mobile applications and manage navigation and communication between components. | Analyze(4) | | | • | CO4: Apply data persistence in Android applications by using SQLite databases and content providers to perform insert, update, delete, and retrieve operations effectively. | Apply (3) | | | • | CO1: Explain BI concepts, architecture, and applications | Understand (2) | | | susiness • elligence | CO2: Identify data sources and apply preprocessing techniques. | Understand (2) | | | • | CO3: Demonstrate the use of modern BI tools to create dashboards and reports for decision- | Apply (L3) | | | | making. | | |----------------|-------------------------|---|----------------| | | | CO4: Evaluate BI applications in domains like finance, healthcare, and retail. | Evaluate (5) | | MCA- | | CO1: Install and configure BI tools like Power BI and import data from various sources. | Understand (2) | | | Lab on
Business | CO2: Perform data cleaning and transformation using Power BI and Excel. | Apply(3) | | 454(B) | Intelligence | • CO3 Create basic data visualizations and interpret dashboards for business insights. | Apply(3) | | | | • CO4. Demonstrate ability to build interactive dashboards using slicers, cards, and charts. | Apply(3) | | | | • CO 1: Understand the evolution of AI and the significance of Deep Learning. | Understand (2) | | MCA- | Generative AI | • CO 2: Apply various Neural Network architectures for tasks like image recognition and sequence modeling. | Apply (3) | | 455(A) | | • CO 3: Analyze data preprocessing and training techniques for neural networks. | Analyzing (4) | | | | • CO 4: Design practical solutions using advanced neural networks for diverse applications. | Creating (6) | | | Lab on
Generative AI | • CO1. Apply Python and TensorFlow basics, including data handling, visualization and preprocessing techniques. | Applying (3) | | MCA- | | CO2. Implement and compare Generative AI models such as GANs, VAEs, LSTM networks, and Transformer models for text generation and images. | Applying (3) | | 455(B) | | CO3. Evaluate model performance and experiment with hyper parameters and optimization techniques to enhance Generative AI outcomes. | Evaluating (5) | | | | CO4. Develop innovative applications in text generation showcasing practical skills. | Creating (6) | | | | CO1: Design user interfaces using HTML5 principles, ensuring accessibility and semantic structure. | Create (6) | | MCA-
456(A) | UI and UX
Design | CO2: Create visually engaging and interactive
UI components using advanced CSS3
techniques. | Create (6) | | | | CO3: Implement TypeScript logic to manage user interactions in UI design. | Apply (3) | | | | CO4: Build reusable UI Component using
TypeScript Function, Classes and Interfaces | Create (6) | | | | • CO 1: Demonstrate understanding of HTML structure with semantic tags. | Understand (2) | | MCA- | Lab on UI
and UX | CO 2: Apply CSS3 and TypeScript to validate
forms and toggle UI states | Apply (3) | | 456(B) | Design | CO 3 Build Reusable UI components such as
modal Using TypeScript Classes | Create (6) | | | | • CO 4: Create and manipulate a list of tasks using loops and conditionals. | Apply (3) | | | | CO1: Understand DevOps Principles, Tools
and Cultural Transformation in software | Understand (2) | |----------------|---|---|--------------------------| | MCA | Day One | development. • CO 2: Apply Version Control using Git to | | | MCA-
457(A) | Dev Ops | manage source code and collaboration | Apply (3) | | | | CO 3: Implement Configuration Management using Chef | Create (6) | | | | • CO 4: Understand and Utilize Docker for application Containerization | Understand (2) | | | | CO1: Describe the fundamental concepts and importance of version control systems in software development. | Understand (2) | | MCA | Lab on Dev | CO2: Perform Git operations such as repository creation, commit, branching, and merging. | Apply (3) | | 457 (B) | Ops | CO3: Utilize GitHub to manage collaborative projects through cloning, pushing, and pulling code. | Apply (3) | | | | CO4: Create and configure Docker accounts
and pull OS images for containerized
environments. | Apply (3),
Analyze(4) | | | E-Commerce
Technologies
and
Management | • CO1: Explain the concepts and applications of E-Commerce | Understand (2) | | MC | | CO2: Understand the structure and functioning of web portals and crowdsourcing platforms | Understand (2) | | MCA-
458(A) | | CO3: Apply front-end and back-end technologies for Developing E-commerce system. | Apply (3) | | | | CO4: Explain the principles of e-commerce
security, including common network threats,
fraud prevention techniques | Understand (2) | | | Lab On E- | CO1: Design and develop basic static web pages for an e-commerce website using HTML and CSS. | Apply (3) | | MCA- | Commerce
Technologies | CO2: Understand the process of domain name registration and identify hosting services | Understand (2) | | 458(B) | and
Management | CO3: Deploy websites using free hosting platforms and manage via control Panel | Apply (3) | | | | CO4: Install and configure WordPress locally, add products, and simulate a complete checkout process. | Apply (3) | | | | CO1: Understand the scope, sources, and types of data used in social media analytics. | Understand (2) | | MCA- | Social Media | CO2: Analyze social media campaigns and interpret platform-specific metrics. | Analyze(4) | | 459(A) | Analytics | CO3: Compare and interpret analytics data from various social media platforms. | Compare (4) | | | | CO4: Process, visualize and draw conclusions
from social media datasets | Evaluate (5) | | MCA-
459(B) | Lab On Social
Media | CO1: Set up and use social media analytics tools across various platforms | Apply (3) | | | | · · · · · · · · · · · · · · · · · · · | | |--------------------------------|---|--|--| | | Analytics | CO2: Collect and interpret real-world social
media data for campaign analysis. | Analyze (4) | | | | CO3: Visualize traffic and engagement insights using Google Data Studio | Create (6) | | | | CO4: Evaluate ad performance and develop data-driven recommendations | Evaluate (5) | | | | CO5: Design and monitor effective hashtag-
based social media campaigns | Apply (3) | | MCA-
460(A) | Virtual and
Augmented
Reality | • CO1: Define the concepts, history, and evolution of VR and AR. | Remember (1) | | | | CO2: Describe the working principles of
VR/AR hardware and tracking technologies. | Understand (2) | | | | • CO3: Demonstrate interaction techniques and rendering pipelines in immersive technologies. | Apply (3) | | | | CO4: Analyze AR/VR applications across
different industry sectors. | Analyze (4) | | MCA-
460(B) | Lab on
Virtual and
Augmented
Reality | • CO1: Configure and deploy development environments for creating AR/VR applications. | Apply (3) | | | | • CO2: Develop interactive AR/VR applications using appropriate SDKs and tools. | Create (6) | | | | CO3: Implement tracking and user interaction
techniques in immersive applications. | Apply (3) | | | | CO4: Evaluate and optimize the performance of
AR/VR applications. | Evaluate (5) | | RP-461 | Research
Project | CO1: Identify and define a real-world research
problem. | Understand (2) | | | | CO2: Conduct literature survey and identify
research gaps. | Analyze (4) | | | | CO3: Formulate hypothesis or objectives and
design methodology. | Apply (3) | | | | CO4: Develop working
models/simulations/prototypes based on
selected tools. | Create (6) | | | | SEMESTER – IV | | | Course
Code | Course Title | Course Outcome (CO) | Cognitive Level
(As Per Blooms
Taxonomy) | | | Massive
Open Online
Course | • CO1: Identify and select appropriate MOOC courses aligned with academic and career goals. | Remembering (1) | | MOOC-
471 &
MOOC-
472 | | CO2: Demonstrate understanding of new and
emerging technologies learned through
MOOCs. | Understanding (2) | | | | CO3: Apply the acquired knowledge and skills
from MOOC to practical scenarios or mini
projects. | Applying (3) | | | | CO4: Analyze concepts learned and present
learning through assignments, discussions, or
presentations. | Analyzing (4) | | OJT-
473 | On-The-Job
Training
Internship
(OJT) | CO1. Recall key concepts, terminology, and tools related to the field | Remembering (1) | | | | CO2. Understand core processes and
methodologies applicable in the professional | Understanding (2) | | environment | | |---|----------------| | CO3. Apply learned knowledge to perform
tasks and solve real-world problems in the field | Applying (3) | | CO4. Analyze workplace situations, identify
issues, and propose solutions for improvement | Analyzing(4) | | CO5. Evaluate strategies and propose new
solutions based on experience and learned
knowledge | Evaluating (5) | | CO6. Design and develop innovative solutions,
strategies, or processes based on the knowledge
and experience gained throughout the course | Creating (6) |