Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon, Ordinance 181

College Name : - Institute of Management Research and Development,

Shirpur

Title of the Course : - Certificate Course in AI Using Python

Aims / Objective : - To prepare learners with practical AI skills using Python,

covering data preprocessing, machine learning, deep learning,

and NLP for AI- driven applications

Duration of the Course : - 1 Year **Fees Structure** : - Rs. 3,000/-

Course Structure :- 1) Paper I – Fundamental of Artificial Intelligence using Python

2) Paper II – Advance AI with Python

3) Paper III- LAB on AI using Python

Eligibility of the Course: - Student passed in the Higher Secondary Examination

(HSC) (10+2) or equivalent examination.

SN	Paper	Name of the subject	Theory / Practical	Teach ing Hours	Maximum Marks Allotted			Passing			Credit
					Ext	Int	Total	Ext	Int	Total	
01	Paper I	Fundamental of Artificial Intelligence using Python	THEORY	90	60	40	100	24	16	40	6
02	Paper II	Advance AI with Python	THEORY	90	60	40	100	24	16	40	6
03	Paper III	LAB on AI using Python	PRACTICAL	120	60	40	100	24	16	40	8

Minimum Staff : - 03 Three

Mode of Examination : - English (Theory & Practical)

Detailed Syllabus : - Attached

Paper I Fundamental of Artificial Intelligence using Python (90 Hrs.)

Unit-I Introduction to Use Cases for AI [20 Hr]

- What is AI?
- Why AI?
- Branches of AI
- Building Intelligent Agents Representative
- AI Use Cases:
 - o Digital Personal Assistant and Chatbots
 - Shipping and Warehouse Management
 - o Human Health,
 - o Knowledge Search
 - o Recommender Systems
 - o The Smart Home
 - o Gaming, Movie Making
- Data Cleansing and Transformation.

Unit-II Machine Learning Pipelines

[12 Hr]

- What is a Machine Learning Pipeline
- Problem Definition
- Data Ingestion
- Data Preparation
- Data Segregation
- Model Training.

Unit-III Feature Selection and Feature Engineering [14 Hr]

- Feature Selection
- Feature Engineering
- Outlier Management
- One-hot Encoding
- Log Transform,
- Scaling
- Date Manipulation

Unit-IV Classification and Regression Using Supervised Learning [18 Hr]

- Supervised versus Unsupervised Learning
- What is Classification
- Preprocessing Data
- Label Encoding

- Logistic Regression Classifiers
- The Naive Bayes Classifier
- SupportVector Machines
- Confusion Matrices
- What is Regression?

Building Single-Variable Regressor Building Multivariable Regressor.

Unit-V Predictive Analytics [12 Hr]

- Ensemble Learning
- Decision Trees
- Random Forests
- Dealing with Class Imbalance,

Unit-VI Detecting Patterns with Unsupervised Learning [14 Hr]

- Unsupervised Learning
- Clustering Data with K-Means Algorithm
- Estimating Number of Clusters with the Mean Shift Algorithm
- Estimating Quality of Clustering with Silhouette Scores,
- Gaussian Matrix Models
- Propagation Model

References:

- 1] Python Machine Learning, Sebastian Raschka, Vahid Mirjalili, Packt Publishing, ISBN: 978-1-78995-575-0
- 2] AI Crash Course, Hadelin de Ponteves, Packt Publishing, ISBN: 978-1-83864-535-9
- 3] Artificial Intelligence with Python, Prateek Joshi, Packt Publishing, Packt Publishing, ISBN: 9781786464392

Paper II Advance AI with Python (90 Hrs.)

Unit-I Building Recommender Systems [14 Hr]

- Extracting the nearest Neighbors
- Building K-Nearest Neighbors Classifier
- Commuting Similarity Scores
- Finding Similar Users Using Collaborative Filtering
- Case Study:
 - o Building Movie
 - o Recommender System.

Unit-II AI on Cloud

[14 Hr]

- Why are Companies migrating to Cloud?
- Top Cloud Providers
 - o Amazon Web Services (AWS),
 - Microsoft Azure
 - o Google Cloud Platform (GCP).

Unit-III Building Speech Recognizer [16 Hr]

- Working with speech signals
- Extracting speech features
- Visualizing audio signals
- Transforming audio signals into frequency domain
- Generating audio signals
- Synthesizing tones to generate music
- Recognizing spoken words

Unit-IV Building NLP Tools

[20 Hr]

- Installations of NLP packages
- Tokenizing text data
- Stemming
- Lemmatization
- Dividing text into chunks
- Bag of words model
- Building category predictor
- Constructing gender Identifier
- Building sentiment Analyzer

Unit-V Chatbots

[08 Hr]

- Concepts Chatbots today
- A well-architected chatbot Platforms
- Creating a chatbot

Unit-VI AI and Big Data

[18 Hr]

- Crawling
- Indexing
- Ranking
- Worldwide datacenters
- Distributed lookups
- Custom softwares
- The three V's of Big data
- Big data and machine Learning
 - Apache Hadoop
 - o Apache Spark
 - o Apache Impala,
- NoSQL databases
 - o Apache Cassandra
 - o MangoDB
 - o Redis
 - o Neo4j

References:

- 1] Python Machine Learning, Sebastian Raschka, Vahid Mirjalili, Packt Publishing, ISBN: 978-1-78995-575-0
- 2] AI Crash Course, Hadelin de Ponteves, Packt Publishing, ISBN: 978-1-83864-535-9
- 3] Artificial Intelligence with Python, Prateek Joshi, Packt Publishing, Packt Publishing, ISBN: 9781786464392

Paper III LAB on AI using Python (120 Hrs.)

1. Installation of Python & Packages

- Install Python on Windows/Ubuntu.
- Install essential packages using pip or conda.
- Load datasets using Pandas and NumPy.

2. Data Preparation

• Perform data cleansing, filtering, and aggregation.

• Handling Missing Values

- o Remove missing values (dropna()) or impute using mean, median, or mode (fillna()).
- o Use ML models to predict missing values.

3. Feature Scaling, and Inconsistent Values

Feature Scaling

- o Normalize data using Min-Max Scaling (MinMaxScaler).
- o Standardize data using Z-score Scaling (StandardScaler).

Handling Inconsistent Values

- o Detects duplicates and incorrect formats (duplicated(), unique()).
- o Standardize categorical values and correct data formats (str.lower(), pd.to_datetime()).

4. Feature Engineering & Selection

- Apply feature scaling techniques (Normalization, Standardization).
- Select important features using univariate selection, correlation heatmaps, wrapper-based, and filter-based methods.

5. Feature Engineering Techniques

Outlier Management

- o Detect outliers using statistical methods (e.g., IQR, Z-score).
- Handle outliers by removing them or transforming values (e.g., capping, log transformation).

One-Hot Encoding

- Convert categorical variables into numerical form using pd.get_dummies() or
 OneHotEncoder from sklearn.
- o Example: "Red", "Blue", "Green" \rightarrow [1,0,0], [0,1,0], [0,0,1].

Log Transformation

- Apply log transformation to reduce skewness in data.
- o Formula: $X'=\log_{10}(X+1)X' = \log(X+1)X' = \log(X+1)$ (to avoid $\log(0)$).

- o Implement using np.log1p().
- 6. Implement Logistic regression classifier.
- 7. Implement Naïve Bayes classifier.
- 8. Implement classifier using Support Vector Machines.
- 9. Build a decision tree classifier and evaluate performance of a classifier by printing classification report.
- 10. Build random forest and extremely random forest classifiers and analyze the output.
- 11. Build K-nearest classifier
- 12. Use confusion matrixes to describe performance of a classifier.
- 13. Implement K-Means algorithm for clustering.
- 14. Visualizing audio signals.
- 15. Transform audio signals to the frequency domain.
- 16. Generate audio signals.
- 17. Installation of NLTK and tokenizing text data.
- 18. Converting words to their base forms using stemming, lemmatization.
- 19. Extracting the frequency of terms using Bag of Words model.